# **Sydney Girls High School**



# **MATHEMATICS EXTENSION 2**

## HSC Assessment Task 1 November 2012

## **Time Allowed - 60 minutes + 5 minutes reading time**

Topics: Circular Motion, Curve Sketching

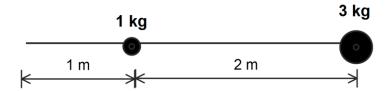
## **General Instructions:**

- There are FOUR (4) Questions which are NOT of equal value.
- Attempt all questions.
- Show all necessary working. Marks may be deducted for badly arranged work or incomplete working.
- Start each question on a new page.
- Write on one side of the paper only.
- Diagrams are NOT to scale.
- Board-approved calculators may be used.
- Write your student number clearly at the top of each question and clearly number each question.
- Use  $g = 10 \text{ ms}^{-2}$

Total: 50 marks

## **QUESTION 1 (13 Marks)**

**MARKS** 


(a) If  $f(x) = 4x - x^3$ , sketch:

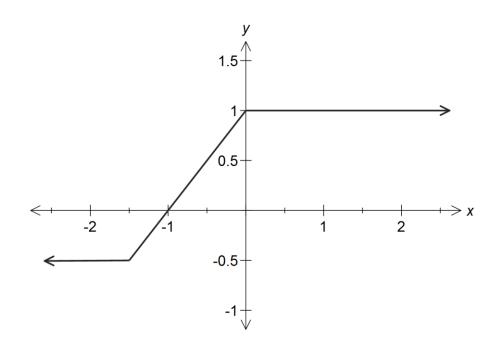
(i) 
$$y = f(x)$$

(ii) 
$$y = \left[ f(x) \right]^2$$

(iii) 
$$y^2 = f(x)$$

- (b) A mass of 4 kg is revolving at the end of a string 3 m long on a smooth horizontal table. The string will break when the speed of rotation reaches 12 rad/s.
  - (i) Find the breaking strain of the string.
  - (ii) Find the new maximum speed in rad/s if the 4 kg mass at the end of the string is replaced by a 3 kg mass and an additional 1 kg mass is added to the string, 2 metres from the 3 kg mass as shown in the diagram below.




## **QUESTION 2 (12 Marks)**

**MARKS** 

(a) Sketch  $9x^2 + y^2 = 16$  showing important features.

2

(b) The diagram below is a sketch of the function y = f(x).



On separate diagrams, sketch:

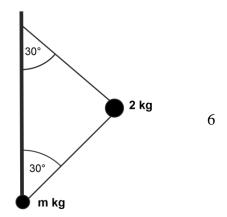
(i) 
$$y = f(-x)$$

(ii) 
$$y = \frac{1}{f(x)}$$

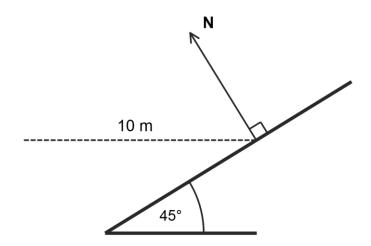
(iii) 
$$y = 2^{f(x)}$$

(iv) 
$$|y| = f(x+1)$$

$$(v) y = x \times f(x) 2$$


# **QUESTION 3 (12 Marks)**

**MARKS** 


6

(a) A 2 metre string has a 2 kg mass placed at the centre and another unknown mass at the bottom as shown in the diagram.

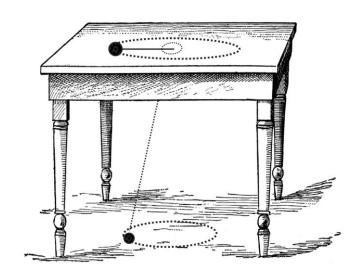
If the 2 kg mass is to rotate at 4 radians per second and the angle between the strings and the vertical is 30°, find the magnitude of the unknown mass at the bottom of the system. (Give your answer correct to 2 decimal places).



(b) On a racetrack, a circular bend of radius 10 metres is banked at  $45^{\circ}$  to the horizontal. Given that the magnitude of the frictional force F (up or down the bank) is at most  $\frac{1}{9}$  of the normal reaction N, find the maximum velocity (in exact form) at which a vehicle of mass m kilograms can safely negotiate the bend.

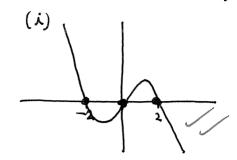


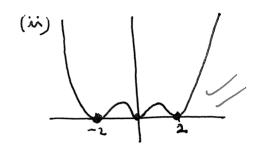
## **QUESTION 4 (13 Marks)**


**MARKS** 

(a) Sketch (without using calculus) the following on separate number planes, showing important features including any intercepts and asymptotes:

(i) 
$$y = \frac{2x}{(x+1)^2(3x-2)}$$


(ii) 
$$y = \frac{x^2 - x}{x + 1}$$


(b) Two particles are connected by a light inextensible string which passes through a small hole with smooth edges in a smooth horizontal table. One particle of mass m travels on the table with constant angular velocity  $\omega$ . Another particle of mass q travels in a circle with constant angular velocity R on a smooth horizontal floor, distance x below the table. The lengths of the string on the table and below the table are K and L respectively and the length L makes an angle  $\theta$  with the vertical.



- (i) If the floor exerts a force N on the lower particle, show that  $N = q(g xR^2)$ .
- (ii) Find the maximum possible value of R for the motion to continue as described.
- (iii) What happens if R exceeds this value?
- (iv) By considering the tension force in the string, show that  $\frac{L}{K} = \frac{m}{q} \left(\frac{\omega}{R}\right)^2$ .

$$1(a) f(x) = x(4-x^2)$$
  
=  $x(2-x)(2+x)$ 





$$T = mrw^2$$

$$= 4 \times 3 \times 12^2$$

$$T_1 = mrw^2$$
=  $3 \times (1+2) \times w^2$ 
=  $9w^2$ 

$$T_{2} = T_{1} + I_{2} I_{2} w^{2}$$

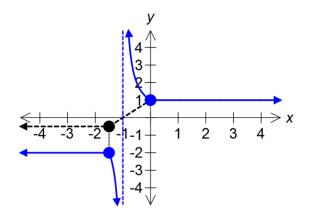
$$= 9w^{2} + 1w^{2}$$


$$= 10w^{2}$$

# **Solutions**

**MATHEMATICS EXTENSION 2 HSC** Assessment Task 1 November 2012

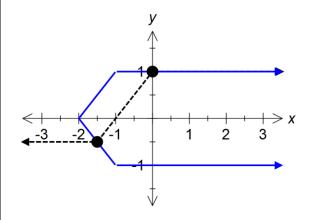
## **Question 2 (12 Marks)**


a) 
$$9x^2 + y^2 = 16$$

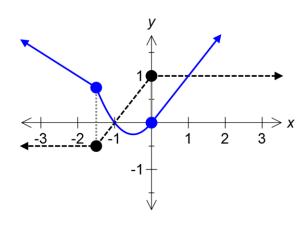


b) i) 
$$y = f(-x)$$



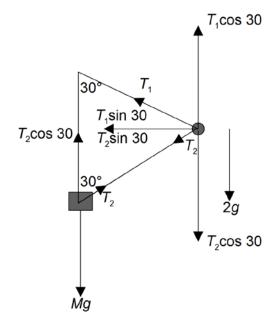

ii) 
$$y = \frac{1}{f(x)}$$



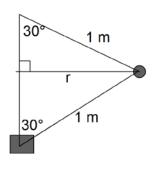

iii) 
$$y = 2^{f(x)}$$



iv) 
$$|y| = f(x+1)$$




$$y = x \times f(x)$$




## **Question 3:**

## a) Forces Diagram:



## **Dimensions Diagram:**



$$\sin 30 = \frac{r}{1}$$

$$r = 0.5 \text{ m}$$

## At *M*:

$$T_2 \cos 30 = M \times 10$$

$$\frac{\sqrt{3}T_2}{2} = 10M$$

$$T_2 = \frac{20M}{\sqrt{3}}$$

## At 2 kg mass:

$$T_{1}\cos 30 = 10M + 2 \times 10$$

$$\frac{\sqrt{3}T_{1}}{2} = 10M + 20$$

$$\sqrt{3}T_{1} = 20M + 40$$

$$T_{1} = \frac{20M + 40}{\sqrt{3}}$$

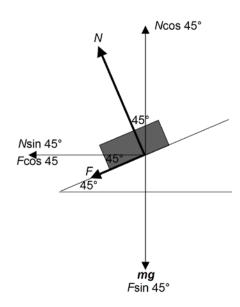
$$T_{1}\sin 30 + T_{2}\sin 30 = 2 \times 0.5 \times 4^{2}$$

$$\frac{T_{1}}{2} + \frac{T_{2}}{2} = 16$$

$$T_{1} + T_{2} = 32$$

$$\frac{20M + 40}{\sqrt{3}} + \frac{20M}{\sqrt{3}} = 32$$

$$20M + 40 + 20M = 32\sqrt{3}$$


$$40M + 40 = 32\sqrt{3}$$

$$40M = 32\sqrt{3} - 40$$

$$M = \frac{32\sqrt{3} - 40}{40}$$

$$M = \frac{4\sqrt{3} - 5}{5} \text{ kg}$$

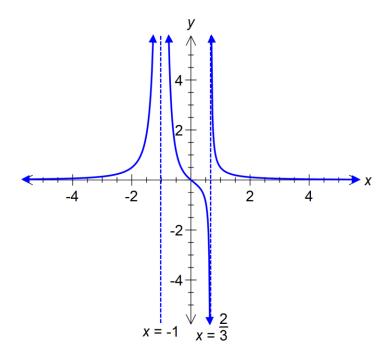
b)



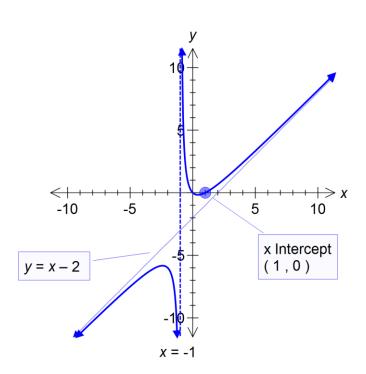
$$N\cos 45 = mg + F\sin 45$$
  
 $N\sin 45 + F\cos 45 = \frac{mv^2}{10}$ 

When  $F = \frac{1}{9}N$ :

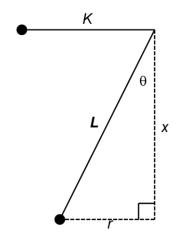
Equating (1) and (2):


$$\frac{45\sqrt{2} \text{ m}}{4} = \frac{9\sqrt{2} \text{ m}v^{2}}{100}$$

$$v^{2} = \frac{45}{4} \times \frac{100}{9}$$

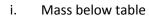

$$= 125$$

$$v = 5\sqrt{5} \text{ ms}^{-1}$$


i.



ii.




b.



$$\sin \theta = \frac{r}{L}$$

$$\cos \theta = \frac{x}{L}$$



Vertically:

$$N + T\cos\theta = qg$$

$$N + \frac{Tx}{L} = qg \to (1)$$

Horizontally:

$$T\sin\theta = qrR^2$$

$$\frac{Tr}{L} = qrR^2$$

$$T = qLR^2 \to (2)$$

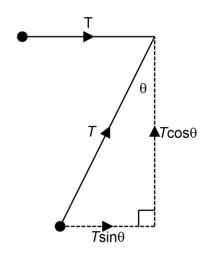
Substituting (2) into (1)

$$N + \frac{qLR^2x}{L} = qg$$

$$N + qR^2x = qg$$

$$N = q(g - xR^2)$$

ii.


$$q(g - xR^{2}) > 0$$

$$g - xR^{2} > 0$$

$$xR^{2} < g$$

$$R^{2} < \frac{g}{x}$$

$$R < \sqrt{\frac{G}{X}}$$



iii. The bottom particle will lift off the floor.

iv. Mass on Table:

$$T = mK\omega^2 \rightarrow (3)$$

Equating (1) and (3)

$$mK\omega^2 = qLR^2$$

$$\frac{L}{K} = \frac{m}{q} \left(\frac{\omega}{R}\right)^2$$